If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1)/(3)10^(2x)=12
We move all terms to the left:
(1)/(3)10^(2x)-(12)=0
Domain of the equation: 310^2x!=0We multiply all the terms by the denominator
x!=0/1
x!=0
x∈R
-12*310^2x+1=0
Wy multiply elements
-3720x^2+1=0
a = -3720; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-3720)·1
Δ = 14880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14880}=\sqrt{16*930}=\sqrt{16}*\sqrt{930}=4\sqrt{930}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{930}}{2*-3720}=\frac{0-4\sqrt{930}}{-7440} =-\frac{4\sqrt{930}}{-7440} =-\frac{\sqrt{930}}{-1860} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{930}}{2*-3720}=\frac{0+4\sqrt{930}}{-7440} =\frac{4\sqrt{930}}{-7440} =\frac{\sqrt{930}}{-1860} $
| 52-x=44 | | 3x+2-2x=15-4x | | -4.5=a=8 | | 17y=85;y=5* | | 8(z−82)=96 | | 2s^2+21s–11=0 | | –7g=10−2g | | d=–8+3d | | 46=1/3x-2 | | 14+k=46;k=32 | | 7n-4=14-2n | | G-g+g-g+g=19 | | 85=9a+81 | | 3^(9x+1)=1/729 | | 96=8(z−82) | | -8=4.8p | | 7n^2+27n+18=0 | | 3x+2(x-5)=4(x+6) | | 11-19=x | | 73x=4x13 | | c-(-8)=20 | | 325=6x-7 | | 3/7x=33 | | 2=g5− 2 | | -3–5w-14= | | 5-c/9=-31 | | 150+25x=450 | | w-9=0;w=9* | | 1=0.1x-0.2-7 | | 2n-2n+4n+n=5 | | 100=10(w+2) | | 6(x-4)=-(4x-6) |